Synthesis and Transesterification of the Complexes of Methyl 2-Methyl-3-trichlorostannylpropoinate with Benzylmethylsulfoxide

Lai Jin TIAN, Zhi Cai SHANG*, Qing Sen YU, Wen Na ZHAO, Bing ZHANG

Department of Chemistry, Zhejiang University, Hangzhou 310027

Abstract: The title complex, $Cl_3SnCH_2CH(CH_3)CO_2CH_3 \bullet L$ (1), was synthesized by the reaction of methyl 2-methyl-3-trichlorostannylpropionate with benzylmethylsulfoxide (L) in solid state at room temperature and readily underwent transesterification into the corresponding analogues $Cl_3SnCH_2CH(CH_3)CO_2R \bullet L$ when reacted with an alcohol ROH. The structural features of these compounds were described, and the possible mechanism of transesterification was suggested.

Keywords: 2-Methyl-3-trichlorostannylpropionate complexes, solid state reaction, crystal structure, transesterification.

2-Methyl-3-trichlorostannylpropionate, $Cl_3SnCH_2CH(CH_3)CO_2R$, a novel type of monoorganotin compounds containing ester group, have received considerable attention since Hutton *et al.* reported their synthesis because of the variety of coordination geometry about tin atom¹⁻⁴. Organotin compounds⁵ like organotin carboxylates or oxides were already used as transesterification catalysts, however, little attention was paid to transestrifications of 2-methyl-3-trichlorostannylpropionate complexes in the literature. In this paper, we report the synthesis in solid state, crystal structure and transesterification of **1**.

The complex **1** was formed by grinding equal molar of methyl 2-methyl-3trichlorostannyl- propionate and **L** at room temperature and readily converted into the corresponding 2-methyl-3-trichlorostannylpropionate analogues **2-8** with yields of 42-93%, when refluxed in corresponding alcohol ROH. The results were listed in **Table 1**.

Cl₃SnCH₂CH(CH₃)CO₂Me•L + ROH → Cl₃SnCH₂CH(CH₃)CO₂R•L + MeOH R = Me 1; Et, 2; *n*-Pr, 3; *i*-Pr, 4; allyl, 5; *n*-Bu, 6; *i*-Bu, 7; cyclohexyl, 8.

Table 1 The yield (%) and melting point (°C) of the compounds

No.	mp	yield									
1	131-2	82.3	3	98-99	89.5	5	104-6	90.2	7	96-7	78.4
2	118-9	92.8	4	120-2	48.3	6	82-3	88.4	8	156-8	41.6

Comparison of v (C=O) (~1650 cm⁻¹) in the complexes with v (C=O) (~1730m⁻¹) of

*E-mail: shangzc@mail.hz.zj.cn

Lai Jin TIAN et al. 1169

the free ester group indicated that the carbonyl oxygen atom is coordinated intramolecularly to the tin atom². The complexation of the oxygen atom of **L** to the tin atom is confirmed by the decrease of the v (S=O) (from 1016 to ~950 cm⁻¹)². The δ values of alkoxyl protons showed a downfield shift comparing with those in the fatty acid ester because the coordination of carbonyl to tin caused the deshielding of alkoxyl protons OCH. The result of X-ray single crystal diffraction of **1** (monoclinic, space group $P2_1$ /c, a = 15.633(5), b = 8.658(8), c = 19.129(8) Å, β = 93.057(7)°, V = 2585.4(4) Å³, Dc = 1.234 g cm⁻³, Z = 4) is in agreement with the spectral analysis (see **Figure 1**)⁶. The complex contains a five-membered chelate ring formed *via* carbonyl oxygen to tin coordination (the Sn–O bond length is 2.354 Å). The tin atom is six-coordinated with Cl(1), Cl(2), Cl(3), O(1), O(2) and C(9) in a distorted octahedral arrangement.

Figure 1 Molecular structure of 1

We attributed the occurrence of the novel transesterification to the intramolecular Lewis acid catalysis by the electrophilic $SnCl_3$ group. The coordination of the ester carbonyl to tin atom (C=O \rightarrow Sn) polarized the carbonyl bond, thereby making the carbonyl carbon more susceptible to attack by a nucleophilic reagent alcohol to form tetrahedral intermediate. Our work provides a convenient way with higher yields, faster rate and easier operation for preparing 2-methyl-3-trichlorostannylpropionate complexes.

References and Note

- 1. R. E. Hutton, J. W. Burley, V. Oakes, J. Organomet. Chem., 1978, 156, 369.
- 2. D. Maughan, J. L. Wardell, J. W. Burly, J. Organomet. Chem., 1981, 212, 59.
- 3. R. Balasubramanian, Z. H. Chohan, R. A. Howie, et al., polyhedron, 1997, 16, 4283.
- 4. Z. F. Li, S. W. Wang, Y. X. Wang, et al., Chin. J. Struct. Chem., 2002, 21, 87.
- 5. J. Otera, Chem. Rev., 1993, 93, 1449.
- 6. The data of elemental analysis, IR, ¹H NMR of all compounds and crystallographic parameters of **1** have been deposited in the editorial office of CCL.

Received 12 March, 2002